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Final Report

RESEARCH ON SPECIALIZED
COMPUTATIONAL METHODS FOR
FLUID-STRUCTURE INTERACTIGCN
SIMULATIONS FOR ADVANCED SUBMARINE
TECHNOLOGY

1 Introductory Comments

This document summarizes research done during the period November 15, 1988-February
2, 1992 on a project aimed at the development of new advanced computational methods for
modeling coupled elastic scattering problems in linear acoustics. The principal feature of the
research was to develop and explore the use of advanced hp-adaptive finite element methods
for this class of problems, including the possible use of coupled boundary element and finite
element methods.

Early in the project, the research team elected to take a fresh approach to these types of
modeling problems: it was known that large scale problems in linear acoustics can represent
enormous computational efforts, and that new approaches would be necessary in order to
cope with the increasing complexity of a~oustical analyses needed in the design of acoustical
systems associated with modern sub.marines. Previous experience and successes by members
of the research team in developing new adaptive hp finite element methods for problems in
solid mechanics and fluid mechanics naturally led to the plan to develop new hp strategies
for structural acoustics. But having made this decision, the important question of how these
physical phenomena are to be modeled remain the next major decision in determining the
direction of the research.

Certainly, the classical approaches to this problem are well documented: acoustical fluid
is modeled using the Helmholtz equation, the structure is modeled using linear structural
mechanics, and mechanical coupling is provided at the interface. But there are many different
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techniques that can be used to model these types of problems. Traditionally, the problem
is solved in the frequency domain with a boundary element type formulation to modeling
acoustical fluid. There are, however, a number of other approaches worth considering. These
include the use of finite elements to model the fluid, with appropriate boundary conditions in
the far field. Also, which particular boundary element method would be best suited for this
class of problems was, at the beginning of this effort, unknown. Codes exist which employ one
boundary element formulation or another, but all of these were known to possess a number of
serious deficiencies, and many of these precluded the use of high-order adaptive Ap methods.
Then there was also a classical approach in which linear acoustics was modeled by integrating
a system of hyperbolic conservation laws. This is by no means a common approach to these
problems, but it carried with it the possibility of incorporating additional physics into the
formulation that may be of use later. Moreover, it was not known at the onset how these
more direct methods compared in efficiency and accuracy with some of the conventional
methods. Finally, mathematical and convergence properties of various boundary element
methods have only begun to be established and a posteriori error elements, vital for the use
of any adaptive scheme, were not available for boundary element methods, and in particular,
were not available forcoupled finite element and boundary element methods.

After a detailed study of the literature and a number of initial calculations, two parallel
approaches were attempted in which the principal effort was directed toward a coupled
boundary element/finite element method formulation and a smaller pilot effort was initiated
on the use of hp-finite element techniques for analyzing transient coupled acoustics problems.
This latter approach occupied around 15 to 20 percent of the total effort and was considered
from the onset as a completely exploratory, somewhat high-risk component of the work.

The prinicpal mathematical model that was selected to provide the basis of this study
was that of the classical problem of elastic scattering in linear acoustics: an elastic body
occupying a bounded domain §? is submerged into an infinite acoustical fluid subjected to
an incident pressure field. One wishes to determine:

e the pressure field in the fluid, in particular on the surface of the scatterer, and

o the velocity field in the elastic structure.

The time variable is eliminated using Fourier transforms and the problem reduces the solu-
tion to the Helmholtz equation in the exterior domain, coupled with the equations of linear
elasticity in © in the frequency. The principal idea, therefore, was similar to that in the
NASHUA code [2]. The boundary integral approach is used to replace the Helmholtz equa-
tion and the problem reduces to the solution of linear elasticity /lincar structural mechanics
equations inside €} coupled with a boundary integral formulation on the boundary I' = 9f).




In both the BEM/FEM study and in the transient acoustic study, new data structures
were developed that would allow the implementation of a new class of adaptive hp finite
element methods in which both the local mesh size h and the order p of the approximation
were treated as free parameters. In addition, it is necessary to develop mathematically rig-
orous a posterior: error estimates to drive the hp-adaptive process. The ultimate purpose of
developing such high order adaptive schemes was an effort to produce exponential rates of
convergence, so that, it was hoped, highly accurate results could be obtained with relatively
few degrees of freedom compared with conventional methods. This super-algebraic conver-
gence property, which was proved earlier to hold for linear elliptic problems, if also applicable
to the subject classes of problems would allow one of the principal missions of the project to
be fulfilled: the treatment of very large-scale modeling problems with relatively few degrees
of freedom. In summary, the principal goals of the project can be stated as follows:

¢ The derivation of a uniformly stable boundary element formulations in the equations
valid for the whole range of wave numbers k. The formulation should be compati-
ble with the the C° regularity assumption for finite element approximations of the
structure.

e The development of C° finite element approximations for one-, two—, and three-
dimensional geometries. This part of the project included such fundamental issues
as the development of new hp finite element data structures and constrained approxi-
mations for coupled boundary element/finite element problems.

e The development of a coupled finite element/boundary element code and the veri-
fication of expected rates of convergence. This included first the development of a
two-dimensional code and led to preliminary work on a three-dimensional code that
is currently under study and further development.

e The derivation, implementation, and verification of an a posteriori error estimate for
boundary element methods. These estimates perhaps represent a significant variance
from those that have been reported for the simplest one-dimensional cases.

e The development of adaptive strategies. Having obtained a local error estimate, these
strategies would provide for reducing mesh size or increasing spectral order so as to
achieve a target error with a number of unknowns.

e The solution of selected problems. These are designed to demonstrate the effective-
ness of the methodology on classical benchmark problems and, ultimately. on realistic
scattering problems of interest in Naval research.




e The verification of the applicability of the hp approximation to structural mechanics,
including bulky structures such as bulkheads, but also possibly shells, thin beams and
plates.

e The devclopment of a mathematical foundation for transient acoustics, including study-
ing mathematical properties of linear hyperbolic systems associated with transient
acoustics, the development of new transient hp-adaptive schemes, the development of
high order transient solvers and associated a posteriori error estimates, and associated
adaptive strategies.

2 State-of-the-Art at the Start

It is accurate to say that at the beginning of this project virtually no papers existed in the
literature on large-scale transient acoustics calculations. The theory itself, while existing
within the framework of abstract Cauchy problems in functional analysis, is not generally
known in the acoustics literature nor were the investigators able to find large scale projects
of any kind that used finite element methods for these types of problems. Also, it was not
known whether or not these approaches would be fruitful, or, if they worked, if they would be
competitive with more traditional schemes or if they would produce new insight into acous-
tical scattering phenomena. These questions, to an extent, remain open but considerable
progress was made in developing these new methodologies.

For the boundary integral formulation and the associated boundary element methods,
the following main schools of research were identified:

e The German school, represented mostly by mathematicians (Wendland, Stefan, Cos-
tubal, and others).

e The American school, represented by full-spectrum from theoretical mathematics to
practical engineering calculations (Hsiao Kleinman, Prelite, Cruze, Bannerjee, Rizzo,
and others).

e The British school of acoustics (Burton, Miller, Jones, Unsell and others) and BEM
(Brebbia, etc.).

e The French school of FEMs (Nedelec, Hamoli, and others).
e Other works (such as the work of Johnston in Sweden, among others).

A variety of different boundary integral formulations were known at the start of this project
and some mathematical basis for them have been established, but the bulk of the litera-
turc which focused on acoustics and finite element approximations employed the classical
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collocation approach. There are papers in the literature on adaptive boundary integral for-
mulations, and among these we mention the work of Rencis, Rauk, and Stephen but very
few numerical solutions to any cases other than simple test problems were found.

3 Technical Approach at the Start

First, the initial approaches to the BEM/FEM formulation are discussed as these comprise
the major portion of the initial work. Due to the complexity of the problem and many
uncertain open questions it was decided that a simplified class of models would be first for-
mulated which minimized the complexity of coping with the behavior of the elastic structure.
This idea consists of replacing the effects of the structure, particular the non-local Green’s
operator, with a local spring-like approximation, reducing the problem to the solution of a
Helmbholtz equation in the exterior domain with a Robin (impedance) boundary condition
on the fluid/structure interface. Three features of this approach should be noted:

1. A mathematical structure of this simplified model resembles the general problem; the
same function spaces are used, natural eigenfrequencies exist, and many of the com-
putational issues are the same.

2. Wherever a boundary integral formulation is used, the resulting formulation involves
exactly the same integrals as for the general coupled problem.

3. The boundary element code being developed for the simplified model could, with some
modifications, could be reconfigured to be used as a major part of the final code for
the general coupled problem.

Emphasis was first placed on the two—dimensional problem. While most of the mathemat-
ical details remain the same in three dimensions, associated technical details, especially those
involving hp-adaptivity are much simpler and easier to implement for the two-dimensional
case. Moreover, it was unclear in the beginning of the project precisely what type of bound-
ary formulation would be most appropriate. It was known that the traditional Helmholtz
integral equation or the hypersingular integral formulation, or the more popular Burton-
Miller formulation all had mathematical and technical deficiencies that had to be coped
with. Initial calculations were nevertheless done with the Helmholtz formulation and with a
form of the hypersingular integral formulation.

Secondly, for the work on the transient acoustics, a number of essentially one-dimensional
cases were initially explored. A few of the issues were more basic. They involved a study
of abstract Cauchy problems for linear acoustics, ignoring initially the effects of the elas-
tic structure. It also involved the development of high order temporal integration schemes
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to advance the solution in time with an accuracy commiserate with the order of the spa-
tial approximation. It is natural, that some of the more classical high order schemes were
first explored including, for example, higher order multistep methods such as the Adams-
Bashford scheme, various types of Runge-Kutta methods, including explicit Runge-Kutta,
implicit Runge-Kutta, and singly implicit Runge-Kutta methods, and some initial studies of
Taylor-Galerkin schemes which heretofore had not been applied to these types of acoustics
formulations.

4 Progress, Success and Failures

The first stage of this project was completed in the summer of 1990 and documented in [3].
At this point the following decisions were made and results were obtained:

e The existence of fictitious frequencies in both Helmholtz formulation and the standard
hypersingular formulation were found to be major deficiencies in these techniques, even
though they provide the basis of a number of commercial and laboratory codes that
are in use today. The Burton-Miller formulation, while overcoming this particular
deficiency, nevertheless had also a number of deficiencies which are not adequately
addressed in the literature. These included complexities with evaluating hypersingular
integrals, and with the overall robustness of the scheme when applied to reasonable
sample problems.

e The Burton-Miller formulation was nevertheless finally selected as a basis for the FEM
code. However, a Galerkin approach rather than a collocation approach was selected.

e An L%-residual technique was developed for a posteriori error estimation. It was derived
mathematically, verified experimentally, and proved to be asymptotically exact for a
significant class of BEM formulations.

e A two-dimensional experimental Ap boundary element code was developed for the
model problem discussed in the previous section. This code was completed, and used
to solve severai trial problems including the infinite cylinder problem in two dimensions.

e Simple h-adaptive strategies and p-adaptive strategies based on the residual error es-
timate and on the equidistribution principle were developed. These were applied to
model problems and became functional in mid-1990.

o A singly-implicit Runge-Kutta scheme was devised to be used in conjunction with an
hp method and a finite difference method for temporal approximations in the transient
acoustics studies. Preliminary a posteriori error estimates were derived, these being

6




based on residual methods for the spatial domain and a rather standard Runge-Kutta
scheme for controlling the time step.

The principal difficulties encountered at this point in the project were connected with
the correct implementation of the hypersingular part of the Burton-Miller formulation. In
particular, initial studies showed that, contrary to previous expectations, nonexponential
convergence rates were obtained. Nevertheless, the Burton-Miller formulation for the bound-
ary integral methods and the h-p adaptive schemes for the structural approximation were
regarded as viable approaches it was decided to go forward with the implementation of these
methodologies for a broader class of problems. Work was then directed in three directions:

1. Development of a two—-dimensional code for the full coupled problem,

2. development of a three-dimensional code for the model problem with simplified Robin
boundary conditions, and

3. the exploration of new temporal schemes, in addition to Runge-Kutta methods, for
handling high-order transient acoustic calculations.

All of these tasks were completed by the end of 1991 and reported in [4] and [5]. At this
point in the project, a number of the major conceptual, mathematical and modeling issues
were thought to be understood and the basis for modeling a considerably more general class
of problems was established. In particular:

e The issue of the correct implementation of the hypersingular operators was success-
fully solved in [5] and in more detail later in [6]. This involved, as noted earlier, a
full Galerkin approximation of the hypersingular integral formulation; we believe this
was the first such formulation attempted in the literature. Fortunately, subsequent
calculations showed that this led to optimal rates of convergence so that, once again,
the possibility of obtaining exponentially convergent techniques for general classes of
acoustics problems emerged.

o A three-dimensional h-p boundary element code for the model problefn was completed
and verified by solving the problem of elastic scattering on a sphere and on a finite
cylinder.

e A technique for obtaining L? a posteriori error estimates was coded, implemented. and
tested on a number of sample problems.

e A two-dimensional hp-adaptive coupled boundary element /finite element code for cou-
pled scattering problems was completed. This represented the completion of a major




research tool in which a variety of computational issues could be studied. Initially this
code was used to study scattering of plane waves on infinite elastic cylinders.

o The feasibility of appllying hp approximations for structural problems was tested on
a cylindrical elastic shell. The effect of shell thickness on the behavior of both the
structure and on scattering was explored. It was discovered that for simple geometries
such as this, a two-dimensional finite element code based on hp-adaptive methods was
perfectly adequate and could approximate the shell behavior for thicknesses ranging
from very thin shells to very thick shells. On the other hand, some deterioration in the
quality of solutions for problems with corners and discontinuities was observed. It was
clear from these examples that in future calculations the ability to use h-adaptivity in
the neighborhood of scatterers such as corners represents a vital and useful part of the
overall strategy.

o A new class of high-order Taylor-Galerkin schemes were developed and proved to
be unconditionally stable for the transient acoustics problem. This was regarded as a
significant advance in existing technology. These schemes proved to be very robust and
accurate and outperformed classical Runge-Kutta methods on a significant number
of test problems. Some preliminary adaptive strategies for transient acoustics were
studied and a research code was developed that produced a number of interesting
results. Still, much work remains to be done in this area. Current results appear to
be sensitive to the particular adaptive strategy used, and further work is needed in
developing robust and precise error estimates for these classes of problems.

e Also, progress was made in developing adaptive techniques for the transient response
of elastic structures coupled to the transient acoustic package. These results also look
promising, although they are still very preliminary in nature.

It can be said that at the conclusion of this project a number of major new results have
been established and a good starting point for the continuation of the work into three—
dimensional simulations is in place. Further work will be augmented by studies on parallel
computation, for it is believed that with the use of parallel algorithms, additional efficiencies
can be obtained which enhance further those expected to be produced by the hp-adaptive
algorithms.

5 Final Technical Approach and Final Goals

As a summary of some of the ideas outlined earlier, the following assumptions have heen
established for current and future work. The weak or variational form of the Burton-Miller




formulation, coupled with the residual veriational formulation for tiie elasticity equations,
will be used as a basis for further work.

e General h-p approximations of both boundary and domain variational formulations
will be used.

e A posteriori estimates will be derived based on error residual methods for the structuic
and L? estimates for the boundary element method.

e Continued work will be done on hp-adaptive data structures and adaptive strategies
which could lead to exponential rates of convergence.

e Work will continue on modeling coupling the transient behavior of the acoustical fluid
to that of an elastic structure and with the high-order multistage Taylor-Galerkin
methods will be the driving algorithm for the temporal approximation.

e Studies of parallel algorithms will be undertaken.

6 Problems Perceived and Future Directions

The work on the final three-dimensional code for the coupling problem initiated in November
of 1991 remains to be a major task in the current research. The following tasks should be
listed:

e Development of a three-dimensional FE code for the elasticity equations coupled to
the boundary element method.

o A study of techniques for using hp-FEM’s for treating thin flexible structures such as
beams, plates, and shells.

e A geometrical CAD-like code is needed which is capable of modeling solid objects and
general surfaces. This requires the development of a new preprocessor including an
h-p mesh generator for nontrivial geometries.

e Development of an a posteriori estimate for the three-dimensional coupled problem
together with some new hp-adaptive strategies.

e Extension of the transient acoustic work to fully coupled problems and then to three
dimensions.

¢ Dxploration of domain decomposition methods and coarse-grain parallel algorithms
for the solution of some large scale problems on multiprocessor architectures.
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As for difficulties yet to be resolved, on the theoretical side the integration of almost
singular functions remains a critical issue. The development of inexpensive but precise
integration procedures for almost singular integrands may determine the overall success of
the proposed methodology. Currently rather simple adaptive procedures are used and these
may prove to be quite expensive unless more simplified quadratures can be obtained. On the
other hand, simplified quadrature rules may defeat all the gains obtained using adaptivity.

Research on a theory of a posteriori error estimation must be continued. This includes
the study of more practical inexpensive implementations of residual estimates and a search
for new estimates that would be more sensitive to the errors in derivatives in the solution.
Most importantly, techniques for handling geometric singularities such as lines, corners and
material interfaces which are known to be very important in the scattering of acoustical
waves must be studied. The major issues have to do with the geometry of these classes of
problems and how well that geometry is approximated. Qur feeling is that the geometry
questions are open, and that a considerable amount of additional work is needed before
they are adequately understood or correctly factored into any reasonable acoustical analysis
capability.
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Variational Formulations and hp-Boundary
Element Approximations for Hypersingular Integral
Equations for Helmholtz Exterior Boundary—Value

Problems in Two Dimensions

Abstract

In this paper, a weak hypersingular formulation of the Helmholtz exterior bound-
ary—value problem in two dimensions is presented. The weak formulation derived
here is implemented into an h-p-adaptive boundary element approximation and the
elementwise LZ2-residual is used as the error estimation in the adaptive scheme. A
series of numerical experiments on the convergence of the solution and the properties

of L?-residual is given. The work is an extension of methods and results contained in
[2] and {3].

1 Introduction

The aim of this paper is to formulate weak hypersingular boundary integral equations for
the exterior boundary-value problems for the Helmholtz equations in two dimensions. The
presented work is an extension of methods and results of earlier work [2]. Additional details
concerning formulation of the boundary-value problem, its physical meaning and related
mathematical concepts can be found in [2] and (3].

The priority in the development of variational formulations of hypersingular integral equa-
tions for the Helmholtz exterior boundary-value problem belongs to M. A. Hamdi [5]. The

*On leave from the Section of Applied Mathematics of Technical University of Cracow, 31-55 Krakow,
ul. Warszawska 24, Poland.




classical Helmholtz exterior boundary -value problem is the following: or a given bounded
domain Q with a smooth boundary I' and completion Q¢ (Fig. 1), lind a function w: Q* — €
which satisfies

e the Helmholtz differential equation

~Au—ku=0 inQF (1.1)

o the Sommerfeld boundary condition at infinity

-@—iku

Em =o(r'%) (1.2)

e a boundary condition on T,

where & 1s the wave number.

In a mathematical description of acoustic scattering, a scattered pressure p* is assumed
to fulfill equations (1.1) and (1.2). The incident pressure p™¢ fulfills equation (1.1) in the
whole space B? and the total pressure

p=p"+p’ (1.3)

fulfills one of the typical boundary conditions on T

p=0or (1.4)
a@: =0or (1.5)
dp
.(')‘T, =p. (16)

In (1.6), < is a positive constant. [f ¢ = 0, we obtain the formulation for rigid <cattering; for
€ > 0, a formulation of a compliant boundary with spring stiffness 1 is obtained

2 Classical Integral Formulations
It is well known that the funda nental solution of (1.1) in two dimensions has a form (cf. [1))

#(z.y) = < Holkv) (2.1)




Figure 1: Exterior boundary-value problem.




where i? = —1, 7 = ¢ —y, r = |r|, and Hy is the Hankel function of the first kind and zeroth
order. The function ¢ may also be written as

1 1\
#(2,9) = 5-log () + dol?) (22)
where ¢o(r) € C*(0,00) and ¢ with its derivative are bounded in the neighborhood of 0.
We assume next that
ue Ct ()N Che () (2.3)
where C! is the space of functions the first derivatives of which fulfill a Holder condition

with exponent a.

From the Green formula, taking into account (1.1) and (1.2) we may obtain the Helmholtz
Integral Formulation on the boundary T ([3]):

Ju(@) = [u(y)é%(x,y) - (e, dsty) z €T (24)

where the integral is understood as a Cauchy Principal Value Integral, however it has been
proven (3] that it is in fact a Lebesgue integral.

For the pressure, the Helmholtz Integral Formulation becomes

1 a¢ ap inc 9 =
719) = [ | mbly) - o)) st +7e) (29
because p™ multiplied by ¢ satisfies the second Green identity inside Q2:
a¢ . a inc
11Cc \ d — 2‘
[ g (2 VP @s(3) = [ bl )5 (w)ds(y) =0 (2:6)

Using a similar technique, the hypersingular integral formulation may be obtained {3]

1 du 0% .
— 7( — T (x 7[ (z, d xzel 2.7
26n;c( z) =g uly )3n;carzy Y)ds(y (')ny Onz y)ds(y), (27)

which, for the pressure, becomes

1 ap a2¢ d apmc .
20n;,,-("’) frp(y)anzany x,y)ds(y 7[0ny dn;., z,y)ds(y) ona (), x

(2.8)
The first integrals in both equations should be considered as Hadamard Finite Part Integrals:

f“‘y%—()-.é—(w,y)ds(y)“é‘um{/ u(y) 22— (z. y)d(y)—‘—‘@} (29)
r e=0 | Jr\B, 7

Inginy Inginy g
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Equations (2.4) and (2.7) may be obtained as limit cases of corresponding equations
taken for z,, € Q°:

u(zn) = [ [(y)a (2m¥) - aa—w)qs(zm,y)]ds(y) (2.10)

and

i u
s (@) = )5 @ 0)is) - [ S A e pisly) (21

using appropriate limit theorems for potentials. Here n. denotes an outward normal vector
to the boundary I’ at z = lim z,, € I. For the total pressure p, equations (2.10) and (2.11)
become

plen) = [ [p0) gt ) - giww(zm,y)] () + () (212)

e

2
5%(%)=/r[p(y)anz—i( T, Y) — aany( )— (a:,,.,y)] ds(y)+apz

(zm) (2.13)

The integrals (2.10)—(2.13) are usual Lebesgue integrals of bounded functions.

3 Propositions and Lemmas

Lemma 1. If ¢(z, y) is the fundamental solution of (1.1) defined by (2.1), then the following
equality holds:

k? /n oz, y)dy + /r %(z,y)ds(y) + % =0, Vzerl (3.1)
Proof: Let us define a ball
B(z)={y € B |z - y|| < ¢} (3:2)
with its boundary (circle)
S(z) = {y € B ||z - y]| = ¢} (33)
(see Fig. 2). Applying the first Green identity to u(z) = 1 and ¢ we obtain
= oo, ByP@ WMy + | ';q;(m ys(y)+ | aii(w y)ds(y) =0 (3.4)

¢ fulfills (1.1), then

_ Agd(z, y)d =k2/
e\, yo(z,y)dy .

s(z.y)dy — K [ s(z,y)dy (3.5)

5




Figure 2: Directions in a circle.
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On the circle S, the relation 96
%;-(2, y) = —¢ (T)

is valid (Fig. 2). Then for the smooth boundary

' 1 1
/sme( —#/(¢))ds(y [—— + )] /mm ds(y) = 5 +0= > (3.6)
The second integral tends to 5
¢
-a—n;(a:,y)ds(y) @7
which, with (3.6), gives (3.1). |

Proposition 1. For a piecewise smooth boundary T, any p € C!(T) and any y(z,y) =
@(r) € C?*0, 00), we have

/ %(629;_) Ve + [ F2E e @ =0 68

where 7y = (y) is the tangent vector at y.

Proof: It is well known that for each closed, piecewise smooth curve I' C B? and for any
function u € C*(T)

frVu(y) -T(y)ds(y) =0 (3.9)
If we substitute now 5
u(y) = 522 9)p(y) (3.10)
we obtain (3.8). |
Proposition 2. For any function ¢ € C*(Q) the following equality holds:
(o) = o (3(e.0)) ~ meryAyeley 311

Proof: We use formulas (see Fig. 3)

o= ng
T2 = —m

(3.12)




8% » 5o
Ingdny + 7T Ayp = 0:5,6 ny(z)n(y) + 32.0 2n1(:l:)n2(y)

af:ayl () (y) + a—f%;nz(w)m(y) t%iy?ﬁ(m)ﬁ(y) + %z—f-n(x)rl(y)
+ %{Tz(z)ﬁ(y) + %Tz(‘c)h(y)
=n(z)n(y )g . +7'1(:!:)T2(y) o +T2(a:)'rl( )ajzgyl +72(;,,)72(y)%?

- N ; do\ _ 0 (8
=ly) [V‘”ay,- "( )] "By (am)‘ dry (am)

Let us fix any point € ' and introduce there a local tangential-normal coordinate
system (&1,€2) (Fig. 3). In this system, the boundary I" will be given by a function f

(£ &) el <= &= f(&), V& €(6,6) 6 <0<4 (3.13)

Lemma 2. Let z,, € ¢, &, — « € I. Let the function f given by (3.13) belong to
C'2(6,,6,) and p be bounded on I'. Then

[ #@n pwds(y) — [ o= vp(y)ds(y) (3.14)

as m — OC.

Proof: We introduce regularizing functions

v(z) = /dm:y (y)ds(y)

(3.15)
ve(2) = /F\B' o(=,y)p(y)ds(y) + ]m' de(z,y)p(y)ds(y)
where (cf. (2.2)) |
Ge(Z,Y) = Pe(r) = % (1 ~210g£—5) + ¢o(7) (3.16)

It can be easily verified that the function
$(r) -
q’z(zay) = ‘I’E(T) = (314)

as a function of &,y is a C! function in R*.




Figure 3: Tangential-normal local coordinate system.




Assuming that |p(y)] £ M we have now, for ¢ < §,

logr 1 r?
- < - - L
o(e) ~ual < [ |- - o (1= 2toge - 5 pwiastw
M r?
<2 [ loge —logr) + = — 1] ds
< i /[:nB, 2(log 1057)+€2 1 ds(y)
(3.18)
M
< [ fplog= +——1'\/1+(f’ ))?dé,

<wl.

as € — 0. Then v is the limit of the uniformly convergent sequence of continuous functions

2log - +——1‘ |1 +7r%|dé; < Celoge — 0

v, and therefore is continuous. |

Lemma 3. Let us suppose all assumptions of Lemima 2 hold and, moreover, the Holder
condition on p over I' is fulfilled. We have then

9¢

[ oy @)ds(y) — — [ G VP + 3ol (3.19)

Proof:
[ @ W0)s(3) = [ S 0ol - ) + (@) [ 5,00

=/r5ni-(z"”y)[p(y) _p(“’)]ds(y)+P(3’)/9Ay¢(1:m,y)ds(y) (3.20)

- [ [ G (@ 0)00) — p(@)lds(w) = (2 [ S, )ds(y)

Next we take functions similar to those in Lemma 2:

@) = [ gt ly) - p)isy

d¢
wle) = [ Gat@vly) - paldsty) (3:21)

do.
+ /rnB( Oy (z.y)[p(y) — p(z)]ds(y)
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where @.(z,y) is defined by (3.16).

o) = @l = [ 1520 - 22,00 Iy - plo)lds(
= oo o + 060 + 5 = 60| P ) piapiasty)  322)
< :?C—;/_: Er; - % | cos B(y)|rodé, < Ce®

where 3(y) is the angle between n(y) and r (see Fig. 4) and C denotes different constants.
Then w is the uniform limit of w, and is continuous. We have obtained then

/r %(wm,y)[p(y) - p(e)ds(y) — /r a%(z,y)[p(y) — p(x))ds(y) (3.23)

In turn, by Lemma 1,

kzp(:c)/nrb(a:m,y)dy N k%(a:)LqS(:c,y)dy
' (3.24)
d¢ , 1

= ~#(=) [ 5,0 0)dsty) = 32(2)

Finally, (3.20), (3.23), and (3.21) imply (3.19). [ |

Remark. The proof of inequality (3.22) does not depend upon the assumption that
xz € T'. It does not use even the fact that |cos (y)| < Cr® for € € I’ (Proposition 3). For
this reason estimation (3.22) does not depend upon & and convergence of w, is uniform.

Proposition 3. If the first derivative of the function f which describes the boundary T’
(3.13) fulfills in a given interval (6;,6,) the Holder condition with exponent a, then there is
a constant C > 0 such that

| cos B(x)| < Cr®, |cos B(y)| < Cr°, In, —n,| < Cr® (3.25)

in this interval.

Proof: We establish the tangential-normal coordinate system as in Lemma 2 (Fig. 5).
We have the following relations

e _E@r @

r r

| cos B(z)| =

h
r

sin (ﬁ(m) - %)

The proof for cos 3(y) is analogous.

11




Figure 4: Dependence of 3(x) upon r.
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Figure 5: Vectors ny, ny, r and angles between them.
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The vector d = n, — n, is presented in Fig. 5.

2lsin 2| = sm( [B(x) + B(y) —1r]) =2

d] = 2sin ]

cos (5 8(2) + 8w )|

= V2y/cos (B(z) + B(y)) + 1 = V2y/cos B(x) cos B(y) — sin B(z) sin A(y) + 1 < Cr®

because of (3.26).
Lemma 4. By the assumptions of Lemma 3
¢ 0¢ 1
[ e ) p@)ds(y) — [ 22 (@ hp()ds(y) - 5pla)  (3:27)

where n, is the outward normal vector at € I'.
Proof:

J o @ P w)ds(y) = /F[%( 2 ¥) + A s )| PU)s(0)
(3.28)

[ ~(@m 9)p(0)ds(0)

The definition of ¢ implies

0 / 0 ! a J

from which follows

0 %) 2 [0 3}
S () + 5y )—z[&"%ni(maj v| =% 2 inte) - nia) (329

=1

Quite analogously to the proof of (3.23), with the use of (3.29) and Proposition 3, the
convergence

[ | en) + ()| 01dsts) — [ [ 2,0 + ()] )iy

(3.30)
may be established. This with Lemma 3 gives (3.27). d
Lemma 5. By the assumptions of Lemma 3
24 L, .
- 3.31
G @m ¥Ip(w)ds(y) — f (= y)p(y)ds(y) (3:31)
and 9 3¢>
2 3.32
5r Je @ W) = @ y)plw)is(o) (3:32)
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Proof: For the beginning let us consider the following Cauchy Principal Value integral:

s g a g
F 2@y = [ e ypeiay + B2 [ 2 (o) ay (339
s J 1 def -¢ J 1
£ 7 (s () v 1 [ 3% (s ;. ))d“/ ACHL
19 19 d .
, =¢1 Or r -e r
=l£%[*/_,, Fa :a"y] = [/ et —] =0
(3.33) and (3.34) imply
¢ 0
[ %2 @ y)pla)dy = [ (e, y)ple)dy (3.39)
The same result can be obtained when we replace ¢ by ¥, (cf. (3.17)):
@ 9y, s 9%
[ S vp@iyf S yp(=)dy (3.36)

We define once more the “regularizing” functions

(@) = [ 2L (2v)pw)is(y)
= (3.37)
L@ = [ o @Owsm)+ [ e @) p(w)ds()

where 7g is a tangent vector at x (fixed), and assume that boundary I is defined by function

f (cf. (3.13)). Then

fon, |22 @) - 222 30| atw)ist)

<\ [ @n -5 (i,y)] (y) - p (&) ds(w)

t(2) - t.(2)] =

373

s, [aa¢ 2 -3 a"” — (& y)]p(i)ds(y)l

(3.38)
<[V e - 2 )| VT ) - r@)d
c dd. . . 3 ~ o~ 0. ~\ e
+/: {[% —-5%(3,11)} UG - [ 6 - 5 @) @)
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r 1
212 2nr

1

27?2 27

The last integral is equal to zero, because of (3.35) and (3.36), and the remaining terms are
(1+Cr® = 1)dr < Ce°

<2 [
- (3.39)

This inequality proves the uniform convergence of ¢, to ¢, then ¢ is a continuous function and

(3.31) holds.

In the next step we shall prove the existence of the Cauchy Principal Value Integral on
the right side of (3.32). Let us denote by S a tangent line at =(£; — axis) and by B,,,
B.,—two balls with radii ¢,, ¢,, centered at z.

According to (3.35),

(1 +Cr"‘)Cr°"lr+2M/

. 9 (2, 5)p(z)dg = 0 (3.40)

n(Bey\Be,) 07z

By definition of the Cauchy Principal Value Integral,

Lo mi) = [ F @)

96 (3.41)
+ lim, /F\(B \6.y) Brg B VHS(Y)
d¢
-A‘n(B,l\B,z) 972 (=, ¥)p(y ds(y)l Fn(Bey\Biy) a (z,9)[p(y) — p(z)]ds(y)
0¢ 3 . )
+/rn(B.,\B.2) e —(z,y)p(x )ds(y)—/Sn(aq\Btz)%(:c,y)p(z)dy
0¢ - - 1 | or O o (342
+ /Sn(B,,\B.2) aT;c( ¥)p(x)dy| < LG(B.I\B.z) 2r a,r:c 1+ (f'(y))dy )

61

+/Sn(B.,\B.2) -2% lp(:c)[ ( 1+ (fl(?}))z - 1) dy < C/E:l rl=%da

< C(ef —€3)
(3.42) proves the existence of the integral (3.41) in the Cauchy Principal Value sense.
Functions ¢, and v, (cf. (3.37) and (3.15)) are bounded and continuous, moreover
J

te(T) = oo (Z) (3.43)
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We have proven in (3.39) that they are uniformly convergent to ¢{(Z) and 3—;951;(5:) VZekR.
Then
t(:?:):—v(:c) VzeR?

and (3.32) holds. B B

4 Hypersingular Formulation

Let us begin with (2.12). If we apply to it Proposition 2, we obtain

—(xm) = / rdry \9 ( ‘”m,y)) p(y)ds(y) + k? /r rzry¢(zm,y)p(y)d3(y)(4 \

- [ @my); ()ds(y)

Proposition 1 implies

2 (2n) = r;’%(z )aaz( )ds(y) + &° / raTyd(@m VIP(y)ds(y)

(4.2)

- [ty

Now we may pass to the limit with &,, — @ € I, deriving the advantage of Lemmas 2-5:

a a
Ge(e) = [ (@95 w)ds(y) + £ [ roryélavpw)isty)
18 dpin (4.3)
p p
B /anz any(y)ds(y)+§3na:(x)+ dng =)
The product differentiation rule implies
0 op _ 0¢ Op 9 dp
o 6 P )] = e 0l ) () = 5 (e D) (44)

and this allows (4.3) to convert into

1 0 0 )
50—;—;(1:) = /FE [d)(a:,y)br—l;(y)] ds(y) + K'z'/l‘_TzTnywy)P(y)ds(y)
()é 81 ()pmc
- ranl(z )()ny( y)ds(y) + ong (=)
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and making use of Lemma 5

18 a p
55’7”;(4@) = E/rqs(m,y)gr-;(y)ds(y)+k2/rfa:ry¢(z,y)p(y)ds(y)
N , .y (4.5)
p plﬂC
-/ anw(:':,y)any(y)dS(y) t oz (@) Vzerl

This is the final form of the hypersingular formulation of (1.1)-(1.3).

To obtain the variational formulation of (4.5) let us multiply both sides by a test function
q and integrate over I', using simultaneously (3.8):

3 ) @h@)is(@) =~ [ [ e a—f’—(zws( )ds(z)
+1 [ [ raryo(@ vp@)a(e)ds(y)ds(=)

-// ’y) ( , o x)ds(y)ds(x)

for all admissible test functions q.

If we take a linear combination of (2.5) and (4.5) with real and imaginary coefficients, we
obtain the Burton-Miller formulation of the Helmholtz exterior boundary-value problem:

a - a) a
39+ S5 2w = a [ |22 (e pota) - ot 0) o 0)] )
o e R st 4 [[rarysleds) (0

9 9 - l(') inc
__(b_(wyy)é'%(y)ds(y)} +thnC( )+ (1 ka) P

()

r an;c Bn;.;

for a € [0, 1].

Multiplying both sides of Eq. (4.7) by a sufficiently smooth test function g(z) defined
on the boundary I' and integrating it over I' will result in a variational formulation:
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Find p and gf € H(T') such that

5 [p@aede + Lo [P (@)q(a)as |

d
=a /r Ji [gni(z,y)p(y)q(z) - ¢(2ay)5%(y)q(:c)] ds(y) ds(z)

L [ oo ) 2L @astaiste
I /r J e wp@)a(@raryds(v)ds(z) SENCE)

_ / / s (@ ( )q(z)ds(y)ds(m)}

ine (1 —a)i [ Op'™
+a/p )g(z)ds(z) + :

9p
on 7 ‘
for all ¢ € H(I') where H(T') is a Hilbert space on I'.

If the boundary I is smooth then it is also known from the weak form of the boundary
value problem that the appropriate space for Helmholtz differential equation is that p €

H%(T) and —B € H- 2(F) but for this special problem we require that p and —P- are in the
same space. Thus we here assume that H(T') = (I‘) in the variational formulatlon (4.8).

[ (@)a(z)ds(z)

and

5 Numerical Implementation

In what follows, only the Burton-Miller approach is considered. The classical integral formu-
lation and the hypersingular integral formulation can be obtained by simply selecting a = 1
and a = 0.

Galerkin Approximation

Approximating p, g{f and ¢ in (4.9) with linear combinations of the same basis functions

N

N k
p(z) =) pler(@), o=(x) =3 [ 5-] el(=), 9(®) = D ¢ ex(), (5.1)
on on

k=1




. . k

where e, = ex(x) are real-valued basis functions and p*, (gﬁ) and ¢* are complex coeffi-
. . ) k

cients, leads to a system of (complex) linear equations for p* and (gﬁ) . € = constant allows

. - - k .
us to eliminate —g‘r’; by setting (gﬁ) = ep* from the ralculations and leads to a final system
of equations of the form -

Zaklpk=bh I=1v"-1Na (52)

where the load vector is given by

- [apx-nC(mH (1 - a) ;:(':)(z)] ei(z)ds(x) (5.3)

and the stiffness matrix is defined by
o = a3 [ xwla(@ltste) - [ [ el grs(e visiwete)is(a
ve [ /rek(m(w,y)ds(y)e:(w)ds(z)}

x (2, y)ds(y)e(x)ds(z) + ¢ / /

(5.4)

e y)ds(y)el(z)dsm}
h-p Approximation

A one-dimensional version of the h-p approximation discussed in [4] has been implemented.
The principal features of the method are as follows:

e each element has at most three nodes, two endpoints starting with linear approximation
and a middle node for orders of approximation p > 2 (this spectral order p should not
be confused with the pressure),

e hierarchical shape functions discussed in [7] are implemented,

e the approximation is continuous. The linear degrees of freedom are common for neigh-
boring elements, and

e instead of quadratic elements used in the previous research (see [3]), cubic spline el-
ements are used for the approximation of geometry. As shown in Fig. 6. the cubic
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(x31y3)

I (z,%)
(&¢=-1)

Figure 6: Cubic spline interpolation.

spline interpolation is defined by the map:

z(€) = 2161(€) + z262(€) + a1¥1(€) + a2¥,(¢)
Y(€) = y16:1(8) + y202(€) + b1¥1(€) + b¥2(¢)

where z(£) and y( ) are curvilinear coordinates with the master coordinate £ € [—1, 1],
(z1,31 and & ,y;) are the coordinates of the two end points, and ¢,, ¢, ¥4, and ¥,
are the c'ibic shape functions of cubic spline, i.e.,

(E+1)°(2-¢) (-1 (2+¢)

#(€) = 4 $:(§) = 4

(5.5)

(€1 +1) (E+1)*(€E-1) 0
() = : () = :
The map is C*'-continuous whenever a,,a,,b, and b, in (5.5) satisfy
r_ 4 r_ 32
n=g and v2 =1 (5.7)

where y} and yj represent tangential derivative %ﬁ at end points 1 and 2, respectively. The
curve defined in (5.5) will pass through the center point (z3,y3) at £ =0, if a1, a,,b; and b,
in (5.6) further satisfy

1 1 1 1

51‘1 + -2-1'2 + Zal - Z(lz = I3 (58)

1 1 1 1

5.’/1 + 5.7/2 + Ibl - sz =Y (5.9)
2]




Now, a;, a3, b and b; can be determined by solving (5.7)~(5.9) and we have

a1 = ——— [(4y3 — 2y — 2y2) — y; (423 — 224 — 21,))] (5.10)
17 92
1 o )
O [(4ys — 2y1 — 292) — y} (423 — 22y - 21,)] (5.11)
1~ J2
yl
b = ——— [(4¥3 — 2y1 — 2y) — v} (423 — 2z, — 21,))] (5.12)
Vi — Y2
1 , ]
b, = v — [(4ys — 231 — 242) — ) (423 — 22, — 21,))] (5.13)
17 J2

The cubic spline defined in (5.5) with ay, az,b; and b, determined by (5.10)-(5.13) can
fit three points at each element exactly and provide C!-continuity over the whole boundary.

Singular Integration

The only singular integral involved in (4.9) is a weakly singular (logarithmic) integral. Let K,
and K be two elements. A typical contribution to the element stiffness matrix corresponding
to K| and K, is of the form

L [ wsanas) i) (5.14)
where xi are shape functions for element K;,j = 1,2. Only when K, = K, the kernel
function ¢(z,y) is singular. Thus, in case of K, # K, both outer and inner integrals are
evaluated using Gaussian integration with the number of integration points ¥y = p+ 1. In
the case K; = K, the outer integral is again evaluated using Gaussian quadrature with
N; = p+ 1 integration points. Integration of the inner integral with logatrithmic singular
type of ¢(z,y) in (5.14) is illustrated in Fig. 7. For every Gaussian integration point used to
evaluate the outer integral, the element is divided into two parts: integrate from one endpoint
to the singular point and from the singularity to the other endpoint and the integration is
performed separately on each part. Each of the two subintegrals is converted into an integral
from 0 to d;,; = 1,2, with respect to the distance between an integration point and the
singular point. A special integration rule for logarithmic kernels of Gaussian type is then
used with the number of integration points N; = p 4 1. An additional complication arises
due to the lack of an explicit relationship between the integration variable (distance s) and
the master element coordinate, say . This solved in practice by starting with an initial
value for n corresponding to a linear element and performing Newton-Raphson iterations.

In practical calculations, the number of iterations seldom exceeds 3.

S
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6 Numerical Experiment 1

The classical scattering problem (see Fig. 8) for a plane wave impinging on a massless
cylindrical body with radically elastic response, i.e.,

op

on
is used to test the method and code. Using the polar coordinates (r,8), the exact solution
to the test problem is of the form

ep (0 <€ < oo: a constant) onT (6.1)

p=p"+p’ (62)
where the incident pressure
P = P exp(ikr cos8) = Pi,. exp(ikz,) (6.3)

with a constant Pi,., and the scttered pressure p* is evaluated by the series

p’(r,q) = i By Hn (kr) cos(mb) (6.4)

m=0

with H,-Hankel functions of the first kind of order m, and coefficients B,, are given by

d‘(’i""ék“) - %Jm(ka)
B, = —Py by, im—3U") (6.5)
o] €
dkr) T EOm

where J,,, is Bessel function of the first kind of order m, a is the radius of the cylinder, and
b, =1and b, =2 (m=1,2,3,...) (6.6)

k is the wave number. In the case € = 0 the problem reduces to the classical rigid scattering
problem.

In practice, we can only calculate a finite number of terms of the form (6.5) in (6.4) to
obtain a solution for the test problem. The calculation of the Hankel and Bessel function
also introduces some errors. Based on numerical experience, a reasonable estimation of the
L?-error of the solution calculated by using (6.1)-(6.5) is between 10~° to 107,

Forbidden Frequencies of the Test Problem

The solutions of the Helmholtz formulation and the hypersingular formulation for exterior
acoustic wave problems is nonunique at certain forbidden frequencies or wavenumbers. The
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forbidden wavenumbers are found to coincide with the “resonant” wavenumbers for a related
interior problem. In the two-dimensional case of a circle of radius a (the test problem), for
example, the forbidden wavenumbers of the Helmholtz formulation consist of values of & such
that J.(ka) = 0 and the forbidden wavenumbers of the hypersingular formulation consisi
of vaiues of k such that J/(ka) = 0, where J,(ka) is a Bessel function of the first kind and
order n and n is integer.

Example 1. Comparison of solutions for two kinds of hypersingular formulations.

In this example, we compare results solved by the Helmholtz formulation (2.5), the
current hypersingular formulation (4.6), and the classical hypersingular formulation (2.7).
The test problem is solved using uniform meshes of 8, 16, 32, and 64 elements with order of
approximation p = 1,2,...,6. The following data are chosen in the test problem:

€ = 0 (rigid scattering)

R'm::l
a=1
k=14

The comparisons of the L*-errors of the test problem solved by three different formula-
tions for p = 2 and p = 3 are presented in Figs. 9 and 10. The results for other orders of
approximation are similar and are not illustrated. Figures 9 and 10 indicate that the hy-
persingular formulation (4.6) can give a much better solution than the classical formulation
(2.7). In Figs. 9 and 10, the solution of the Helmholtz formulation is slightly better than
the solution of the hypersingular formulation (4.6), but there is no substantial difference
between the solutions solved by two formulations.

It seems that the classical hypersingular formulation (2.7) results are not completely sat-
isfactory in practical computation. In most cases, the accuracy is much lower than that of
the Helmholtz formulation. The low accuracy in the hypersingular formulation deteriorates
the corresponding solution of the Burton-Miller formulation. A major purpose of this re-
search is to improve the accuracy of hypersingular formulation solution and we have arrived
at this purpose.

Example 2. Illustration of the forbidden frequencies for the rigid scattering problem.

The purpose of this example is to show the effects of forbidden frequencies on formula-
tions. Theoretically, as long as the wave number k does not coincide exactly with a forbidden
frequency, the corresponding stiffness matrix is nonsingular and the approximate problem
has a unique solution. In practice, for wave numbers k close to the forbidden frequencies,
the condition of the matrix deteriorates and the quality of the solution drastically decreases.
The situation is illustrated in Figs. 11 and 12 showing the variation of the approximate and

‘)‘1
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exact solutions at field point {—3,0) as : function of wave number k. The following data
have been chosen:

€ = 0 (rigid scattering)

Pinc:'l -
a=1
Ak = 0.001

kmin =1, and kpax =9

For each k, the test problem was solved by the Helmholtz formulation (shown in Fig. 11)
and the hypersingular formulation (shown in Fig. 12) on the same uniform mesh of 8
quadratic elements. Both formulations lose stabilities at certain frequencies. Figure 13 shows
calculations of the Burton-Miller approach (based on the current hypersingular formulation
(4.6)). The formulation delivers consistently stable results for the whole range of wave
numbers k.

The solution produced by the current hypersingular formulation (4.6) proves very stable.
With Ak = 0.001, the numerical solution in Fig. 11 only loses stability at 3 forbidden
frequencies. With Ak = 0.002, ki = 1, and kp.x = 8, the same experiment in [3] showed
that the numerical solution based on (2.7) lost stability at 9 forbidden frequencies (see Fig.
14). This simply implies that the condition of the stiffness matrix formed by the current
hypersingular formulation is better than the condition of the matrix formed by the classical
formulation when near a forbidden frequency.

7 Convergent Rate and A Posterior: Error Estimation

Convergence of the Galerkin method for boundary integral equations has been carefully
analyzed in a series of works by Wendland [10] and p- and hp-versions of boundary elements
are discussed by Rank [7] and Stephan and Suri [8,9] and a brief discussion was given in
[6]. Here, we follow the same approach in [3] together with a posteriori estimates and use
L?-norm of error to measure convergent rates of the formulations, (2.5), (4.6), and (4.7).

The error estimates used in this research are based on the L?-norm residual. For any
approximation solution pj, we define

. dp
(@) = paa) =2 [ foty 2] 20

as the residual for the Helmholtz formulation and then the L%-norm of residual is calculated

oz, y)| ds = 2p"(x) (7.1)




by
N Ge

N
Irll* = /r(f'(s))2 ds = X_,:/r (r(s)*ds = Y 3 wir?(s}) (7.2)

ex=11=1
where N is the number of elements, Ge is the number of Gauss points, w{ represents the
weight of the Gauss integral, and s{ represent the coordinate of the Gauss points. We use
Ge = p+ 1 in (7.2) for each element, p being the order of approximation in each element.

Based on the analysis in [3], we have the following theorem for the residual defined in
(5.1).
Theorem:

Let ¢ = p — pr denote the approximation error inherent in p,. Then, for the rigid

scattering problem, if k is not a forbidden frequency of (2.5), there exist positive coristants
Ci and C; such that for the residual r defined in (7.1) and error e there holds

Cillrli < llell < Cafirl (7.3)

where || - || represents the L?-norm on I' and p is the exact solution. In (7.3), e can be the
error from the solution of the Helmholtz formulation, the hypersingular formulation, or the
Burton-Miller formulation. Furthermore, if e is the error from the solution of the Helmholtz
formulation, then

i 1 _

htpoo Jlef] =

1 (7.4)

where h is the maximum size of the mesh and p is the order of approximation.

In case k is a forbidden frequency, there still exists a positive constant C such that
el < Clirll (7.5)

where II is the L2-orthogonal projection of p onto the orthogonal complement of N(A), A is
defined as the integral operator A

1 9¢(z.y)
= _ - RRA G 7.
Ap = 5p(x) /r P(y)—5, — 9 (7.6)
and N(A) is the null space of A. J

Compared with other forms of error estimates proposed in the boundary element method
(see, e.g. [6,7]), the L?-norm of the residual derived here is simple to calculate and the
computed results agree with the theory quite well in [3].

8 Numerical Experiment 2
Example 3. Rates of convergence for the Helmholtz formulation.
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Selecting

€ = 0 (rigid scattering)

Pinc=1
a=1 -
k=15

The test problem was solved using uniform meshes of 8, 16, 32, and 64 elements with order
of approximation p = 1,2,...,6. The corresponding rates of convergence for h-refinements
at k = 15 are summarized in Figs. 15 and 16 and for p-refinement in Fig. 17. The rates
of convergence for the h-method are very close to the theoretical rate p + 1, increasing in
particular with the order of approximation p. The rates of convergence for the p-extensions
seem to deliver the superlinear (exponential) rate of convergence.

Example 4. Rates of convergence for the hypersingular formulation.

With the same data and the same h-p meshes as in the first example, the problem was
solved once again using the hypersingular formulation given in (4.6). The results, summa-
rized in Figs. 18, 19, and 20, arc slightly less satisfactory than those in the first example.
The observed rates of convergence for the h-method are almost not changed for p > 3. The
p-method shows no signs of exponential convergence. The reason for these suboptimal rates
of convergence is still not clear at this writing, supposedly because of the domination of the
error due to the geometry approximation. The results produced by the hypersingular formu-
lation are more sensitive to the geometry approximation than those obtained by using the
Helmholtz formulation; thus, the cubic spline interpolation in geometry may not be accurate
enough for p > 3.

Example 5. Global effectivity of the L2-residual estimate.

We begin with a simple comparison of the L%-error and L?-residual for the test problem
with data and meshes discussed in Examples 1 and 2. The effectivity of the L2-residual
estimate is measured by an effectivity index which is defined by

effectivity index = :—Eilll (8.1)
Heré, | - || is the norm of L*(T'), r is the residual defined in (7.1), and e = p. — px where

px is the numerical solution of the test problem and p, is the solution solved by (6.1)-(6.6).
Figure 21 summarizes results for the Helmholtz formulation, Fig. 22 for the hypersingular
formulation, and Fig. 23 for the Burton-Miller formulation. The following conclusions can
be drawn.

e For the Helmholtz formulation the L2-residual seems to give an asymptotically exact
error estimate for h-refinements, as predicted by the Theorem in (7.4).
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o For large p and small size elements, the Helmholtz formulation effectivity index de-
creases, supposedly because of the domination of the error due to the geometry ap-
proximation or due to the error in calculating the exact solution by (6.1)-(6.6).

o For the hypersingular formulation, the global effectivity index stays bounded (between
1 and 2 for the test problem) but, as expected, does not converge to 1.

o The effectivity index of the Burton-Miller formulation also stays bounded and is very
close to 1.

Example 6. Global effectivity of the L?-residual estimate for a forbidden frequency.

Figure 24 presents the results of the error estimation for the test problem at a forbid-
den frequency of Helmholtz formulation (k = 5.1356) obtained by using the solution of
the Burton-Miller formulation. The displayed values of the global effectivity indices stay
consistently in the same range as in Fig. 23 (close to 1), indicating that the LZ-residual
corresponding to the Helmholtz formulation can be used for the entire range of frequencies,
provided the IN(A)-component of the error is eliminated by an appropriate formulation (in
this case, the Burton-Miller formulation).

For large p and small size elements, the decrease of the effectivity index is observed in Fig.
24. This is believed to be the domination of the error due to the geometry approximation
or due to the error in calculating the exact solution by (6.1)-(6.6).

Example 7. Local effectivity of the L2?-residual estimate.

The efficiency of the adaptive method is directly determined by the local property of
the error estimate. With the same data as in Examples 5 and 6, the local L*-error and
L%-residual is also compared. The local effectivity index in each element is very close to the
global effectivity index. As an example, Table 1 presents a comparison of local L*-error and
L?-residual is also compared. The local effectivity index in each element is very close to the
global effectivity index. As an example, Table 1 presents a comparison of local L-error and
L?-residual for a mesh of 16 quadratic elements and Burton-Miller formulation at k¥ = 15
and k = 5.1356 (a forbidden frequency for Helmholtz formulation).

9 References

1. Colton, D., and Kress, R.. Integral Equation Methods in Scattering Theory,
John Wiley and Sons. NY, 1933,




. Demkowicz, L., Karafiat, A., and Oden, J. T., “Variational (Weak) Form of the Hyper-
singular Formulation for the Helmholtz Exterior Boundary-Value Problems,” TICOM
Report 91-05.

. Demkowicz, L., Oden, J. T., Ainsworth, M:, and Geng, P., “Solution of Elastic Scat-
tering Problems in Linear Acoustics Using h-p Boundary Element Methods,” Journal
of Computational and Applied Mathematics, 36, pp. 29-63, 1991.

. Demkowicz, L., Oden, J. T., Rachowicz, W., and Hardy, O., “Toward a Universal
h-p Adaptive Finite Element Strategy, Part 1: Constrained Approximation and Data
Structure,” Comp. Meths. Appl. Mech. Engrg., 77 (1-2), pp. 79-112, 1989.

. Hamdi, M. A., “Une formulation variationelle par équations intégrales pour la
résolution de 1’équation de Helmholtz avec des conditions aux limites mixtes,” C. R.
Acad. Sci. Paris, 292, (5 janvier 1981), Série II, pp. 17-20.

. Hsiao, G. C., Kleinman, R. E., Li, R. X., and Berg, P. M. van den, “Residual Error—A
Simple and Sufficient Estimate of Actual Error in Solutions of Boundary Integral Equa-
tions,” in Computational Engineering with Boundary Elements, Proceedings
of the Fifth International Conference on Boundary Element Technology,
Vol. 1 (S. Grilli, C. A. Brebbia, and A. H-D Cheng, eds), Computational Mechanics
Publication, Southampton, Boston, pp. 74-83, 1990.

. Rank, E., “Adaptive h-, p-, and hp-Version for Boundary Integral Element Methods,”
Int. J. for Num Meths. in Engrg., Vol. 28, pp. 1335-1349, 19389.

. Stephan, E. P., and Suri, M., “On the Convergence of the p-Version of the Boundary
Element Galerkin Method,” Math. Comp., 52, pp. 31-48, 1989.

. Stephan, E. P., and Suri, M., “An h-p Method with Quasiuniform Mesh for Integral
Equations on Polygons,” preprint 1989.




Integration point endpoint 2

Singular
point

endpoint 1

Figure 7: Evaluation of singular integrals.

Incident Wave
— NN\

Figure 8: The test problem.

30




°7
1 Hypersingular Formulation (2.7)

-1 -
= 4
o
e 27 Helmholz Formulation Hypersingular Formulation (4.6)
-

-3

-4 ¥ T Y =7 v | B T v T —

1.1 1.3 1.5 1.7 1.9 2.1

Log N (N: Degree of freedom)
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Figure 10: Example 1. Comparison of L?-errors of solutions among three formulations for
p=3.
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Figure 15: Example 3. Experimental rates of convergence for uniform A-refinement (p = 1|
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Table 1: Example 6. Comparison of local L%-errors and L?-residuals for a mesh of 32
quadratic elements and Burton-Miller Formulation.

Elem. k =5.1356 k=15
No.  Local Effectivity Index

1 0.9928 1.0048

2 0.9991 0.9978

3 0.9976 1.0001

4 1.0017 0.9959

5 0.9974 1.0009

6 1.0004 0.9970

7 0.9999 0.9990

8 0.9968 1.0014

9 1.0035 0.9946

10 1.0104 0.9959

11 0.9996 1.0004

{12 0.9905 0.9699

13 1.0118 0.9818

14 0.9820 1.0067

15 0.9890 0.9213

16 1.0138 1.0016
Global Effectivity Index

0.9992 0.9963
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Adaptive Finite Element Methods
For Hyperbolic Systems With Application to
Transient Acoustics

Abstract

The solution of the hyperbolic systems of equations governing transient acoustics
by adaptive finite elements and various finite difference time discretization schemes is
addressed. Emphasis is placed on the use of a class of implicit Runge-Kutta methods
for temporal approximations.

Introduction

This paper describes general high-order adaptive finite element methods for solving wave
propagation problems characterized by hyperbolic systems of equations, with particular em-
phasis on problems of radiation and scattering in transient acoustics. Special features of the

present analysis are numerated as follows:

1. We accept as a model of acoustic wave phenomena the full hyperbolic system of con-

servation laws derived from a perturbation analysis of the compressible Navier-Stokes
equations. This is contrary to most approaches for acoustic modeling which are based
on assumptions of a uniform background flow which renders these systems reducible
to a problem in the frequency domain. The results for different frequencies must then
be stored and then superimposed to solve the fully transient problem. In practice, this
limits the application to cases in which, at most, a few hundred harmonics contribute

to the solution.

The use of the full transient formulation also provides a basis for considering the non-
classical equations of acoustics resulting from the linearization of the compressible Euler
equations around an arbitrary solution to the incompressible Euler equations. The re-
sulting system of equations is still linear and hyperbolic but with variable coeflicients
depending on the back,_ ~und, incompressible flow. The presence of space or time




varying coefficients renders inapplicable most of the classical methods (in particular,
those designed for treating the reduction to the wave equation). Also. by generalizing
the characterization of the flow that governed by the Navier-Stokes equations, viscous
effects can be also included in this as well. Once the transient formulation is accepted,
additional generalizations such as these can be easily incorporated into an existing
code, making the whole approach very flexible.

2. We assume that the final discrete model is obtained by combining a time-discretization
algorithm with an h-p FE discretization in space. In this sense the present work is a
continuation of our study on A-p FE methods presented in [2,8,11]. Only linear time
discretization schemes are considered, but both the method of lines and the method of
discretization in time (see Section 3) are admitted in our formulation.

3. The study is directed towards designing fully automatic self-adaptive schemes with
error control. The use of adaptive methods for wave propagation phenomens seems to
be meaningful only for the class of problems with “short signal” propagation, where
an initial disturbance moves throughout the domain but stays local, and therefore,
requires only the addition of extra degrees of freedom locally. Several fundamental
questions present themselves immediately:

(a) Space-Time Consistency: For a given high-order A-p approximation, what par-
ticular time-discretization scheme should be selected? What are the desired prop-
ertics of an optimal scheme, especially in the context of adaptive methods?

(b) Error Estimation: Ideally, an error estimate should estimate errors resulting from
discretization both in time and space variables. How can this be implemented into
a practical analysis strategy?

(c) Adaptive Sirategies: What adaptive strategies are optimal? Should both A or
p-refinements be used? Is there a need (and place) for k-p strategies?

The study of hyperbolic systems using ideas of classical spectral theory, applied to
acoustics, provides a general framework for addressing these questions and is used as
a basis for the present investigation.

The plan of the presentation is as follows. Following this introduction, we summarize
the essential mathematical properties of the model in Section 2. Section 3 is devoted to
a discussion of two main discretization concepts: the method of lines and the method of
discretization in time. A study on implicit Runge-Kutta methods is presented in Section 4
and some preliminary resnlts on adaptivity are given in Section 5.
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2 Equations of Linear Acoustics—A Summary

We begin with a brief review of some fundamental mathematical results for the linear acous-
tics equations. For a detailed analysis of the subject, we refer to [6].

As a starting point, we record the conservation equations of isentropic, compressible
inviscid flow in the form (see, e.g., [5, 7])

pe+ (pur) =0
p(uk + wguge) + pi =0 (2.1)
p=Ap", A>0,v>1, 1<k, £<n=20r3

where p is the density, u = (ux) the velocity vector (repeated indices are summed), p the
pressure and the standard notation for differentiation is used (p, = 9p/8t, px = Op/0zy,
etc.).

Linearizing the equations around the equilibrium state
p = po=const, =0 (2.2)

and introducing the sound speed ¢y defined as




we arrive at the classical equations of linear acoustics in the form

Pt + pourk = 0

s (2.4)
Ue + —pr = 0

Po

where now p and ux denote perburbations of density and velocity components from the
equilibrium state. Introducing the perturbed pressure p defined by

p=chp (2.5)
we reformulate the equations in terms of pressure and velocity

p: + cpoukr = 0
. 0 (2.6)

U + — =

k.t % Dk

It is important to note that the entire linearization procedure can be performed around an
arbitrary solution of the incompressible Euler equations resulting in the generalized equations
of linear acoustics (see [7]).

Finally, introducing the nondimensional variables

t
- Ty . o U 14 (2.7)

= —_ =, U i1 = — = o
L, L, k Co,p C(2)p0

where L is a unit of length, we arrive at the nondimensional version of the equations in the
form

u; + gradp = 0

(2.8)
p: + divue = 0
Introducing the group variable U = (u7, p)7 and a (formal) operator A
» 0 grad u
AU = —¢ (2.9)
div 0 p
where 7 is the imaginary unit, we rewrite (2.8) in the abstract form,
U,+:AU =0 (2.10)

Equations (2.10) are to be solved in a domain 2 C B", n = 2,3. Typically, two particular

cases are of interest:




e interior problems when 2 is bounded

e ezterior problems when {2 is a complement of a bounded set

In both cases we restrict ourselves to two kinds of boundary conditions:

Case 1.

Case 2.

Kinematic boundary conditions (vibrating boundary)

Up qﬁ;‘u-n:&n on [, (2.11)

where n is the outward normal unit to the boundary and 4, is prescribed velocity
of the vibrating boundary (“solid wall” if @, = 0).

Pressure boundary condition
p=p on I, (2.12)

where p is a prescribed pressure on I',—part of the boundary (0 =T,UT,, T',N
I’y = 0). The initial boundary value problem is completed by specifying initial
condition of the form

u=ugand p=p, at t=0 (2.13)

or, equivalently, r
U=U,, where Ug= (ug', po) (2.14)

In the case of homogeneous boundary conditions, the problem can be cast into
the Hilbert space formulation as follows.

We introduce

e The Hilbert space

H =L*Q) x L} Q) = ( L2(0)> x L*}(Q)
J=1
e Operator A: H D> D(A) — H
where the domain of A, D(A), consists of all vectors U = (uT, p)T such that

dvueL*) , u,=0 on T,

—_—
(€]
—_
<t

e

p € H'(Q) , p=0 on T,

Note that the boundary condition on p is satisfied in the sense of the trace theorem.
whereas the boundary condition on u is interpreted in the sense of the generalized

)




Green’s formula (comp., e.g., [13]). For that reason, the pressure boundary condi-
tion is classified as the Dirichlet boundary condition and the kinematic boundary
condition as the Neumann boundary condition for operator A. Note also that
the L2-norm of the solution vector U can be interpreted as the total (mechanical)
energy of the field.

Within the Hilbert space formalism, the initial boundary value problem can be reinter-
preted as an abstract Cauchy problem for operator A-

U,+iAU = 0 t>0

(2.16)
U = U t=0
where Uy € H.
An H-valued function of time U = U(t)
[0,0)2t - U(t) e H
is called a weak solution to the Cauchy problem if U(t) satisfies two conditions
(i) a regularity assumption
U € C([0,00) ; H) (2.17)
(ii) a weak form of the equation given by
/ = / UT (B, +iA®) dr dt
o Ja
(2.18)
_ /Q UT(0, )dz =0
for every test function
& c Co(R; D(A)NCYR; H) (2.19)

Note that this definition admits, in particular, solutions in the d’Alembert sense.

We record now some fundamental results concerning operator A and the existence and
uniqueness of weak solutions U.

e Opcrator A is self-adjoint (in the complex sense) and therefore its spectrum lies on
the real line and consists of a point spectrum (eigenvalues) and continuous spectrum
(generalized eigenvalues) only.
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e [or the interior problems (§2 bounded), the spectrum of A consists only of eigenvalues
symmetrically located on two parts of the real axis and “escaping” to infinity (A is
unbounded)

U(A) = {Oa ’\la "'/\la /\2, _/\2, . }
(2.20)
D<A <Aq<...< )\, -0
Except for the 0-eigenvalue, all eigenvalues are of finite multiplicity and the eigenvectors
corresponding to A, and —A\, are complex conjugate to each other. All eigenspaces are
orthogonal to each other.

e For the exterior problems, the discrete spectrum reduces to the single eigenvalue 0
while the rest of the real axis constitutes the continuous spectrum.

e In both cases, the eigenspace corresponding to zero eigenvalue, i.e., the null space of
operator A, is of inifinite dimension and it contains all incompressible velocity ficlds.
More precisely, it has the form

T
N(A) = {(uT,p) €H: divu= o} (2.21)
where p is an arbitrary constant for  bounded and ', = @ or p = 0 otherwise.

e In both cases, operator A admits a classical spectral decomposition. In the case of
bounded Q, it reduces to the series representation

AU = > M\dP(U) (2.22)
where dP; is the orthogonal projection on the eigenspace corresponding to \;. For

exterior problems,

AU = /_ “ MPy(U) (2.23)

where the integral is understood in the Riemann-Stieltjes sense (see, e.g., [14]) and P,
denotes the spectral family of A.

o A weak solution U exists and it is unique. Moreover, it is of the form
. oo .
U(t) = e AU, / e"MdP\(U) (2.24)
-0

where the integral reduces to the series representation for the interior problems and it
is understood in the Riemann-Stieltjes sense for the exterior problems. From the form
of the solution, it follows in particular that the cnergy is conserved

U =1Uoll Vt>0 (2.

[ 8]
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<t
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e If the initial condition function Uy satisfies an additional regularity assumption
Uoe D(A) (2.26)

then the solution U € C'((0,00), H)NC((0,00), D(A). We say then that U is a sirict
solution to the problem.

3 Discretization

Any approximation of a transient problem must involve discretization both in time and space
variables. Although a simultaneous discretization in all variables is possible {(e.g., space-time
finite elements), we will adopt the assumption here that the final approximation is obtained
by using finite differences in time and finite elements in space variables.

Two different approaches are possible. In the classical method of lines, an approximation
in space variables converts the original initial-boundary value problem into a system of
ordinary differential equations (ODEs) which next is discretized in time using one of many
time integration schemes for ODEs. An alternative procedure known as the method of
discretization in time (also cailed the Rothe’s method, see [12]), consists of the same two
steps but done in the reverse order. By discretizing in time first, the initial-boundary value
problem is converted into a sequence of boundary-value (-like) problems which, in turn, give
a basis for a spatial approximation and, consequently, a fully discretized scheme.

Both procedures are symbolically depicted in Fig. 1. If A denotes the original operator,
by A, we mean its discrete counterpart obtained as a result of approximation in space
performed first and T'(A,) will denote a fully discrete transient operator resulting from the
time discretization of the system of ODEs. In the notation we have restricted ourselves to one
time step methods assuming that the approximate solution U} at time level ¢, is obtained
using the solution U} ™!, from the previous time level, only. A more general situation is, of
course, possible.

In Rothe’s method the transient operator T = T(A) is defined on the infinite-
dimensional level and only an appropriate discretization in space, performed next, converts it
into a fully discrete operator T',(A). Surprisingly enough, even if exactly the same approx-
imation in time and space variables is used and even for linear equations like the acoustics
problem, the two procedures may result in two different methods.

We proceed now with an example of such a situation. Assume that U is a strict solution
to the problem. Taking (2.10) and multiplying both sides by the (complex conjugate of) a
test function V€ D(A) we arrive at the equivalent (D(A) is dense in H) weak form of




- +1
UnttiApU,=0 u™l=T(U"

[

= 3
b —| 0
4] g 5 (3
N|.= N}
=+ =la
ole ol I
O ol
2 2
o+ 0

-

Un™'=T,(UD) Up™'=T(Up)

Figure 1: Method of lines and method of diseretization in time—a comparison.
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(2.10)
4 (U, V) +i(AU,V) =0 VV ¢ D(a) (3.1)

Restricting ourselves now to a finite dimensional subspace X, of D(A), we can formulate
the corresponding finite dimensional problem as

d
7 (Up, Vi) +i(AUR, Vi) =0 VV,€ X, (3.2)
or equivalently
d
= U,+iA U, =0 (3.3)

where the approximate operator A, : X, — X is defined as
Ah = Ph o Ath (34)

provided P denotes the orthogonal projection in H onto X ;. Note that the approximation
A}, preserves the original properties of A, i.e., A} is self-adjoint on the X,

(ARUL, Vi) = (U, AV,) YU, Ve X, (3.5)

The system of ODEs (3.3) has yet to be discretized in time. This can be done for instance
by using the following finite difference formula of second order

At?
Uh(t + At) - '—2—' Uh,tt(t + At)
(3.6)

=Ug(t) + AtU (1) + (1 - a)é;: Upru(t) + 0(At%)

Making use of (3.3) to replace the time derivatives with spatial derivatives and denoting by
U} the solution after n time steps At, we arrive at the final, fully discrete problem in the
form ) )

At . t

Remarks:

1. Equation (3.7) does not require complex algebra computations. The complex sctting
is necessary to explore the self-adjointness of operators A. A, in formal analysis.
but does not enter the computations (contrary to frequency domain formulations. for
instance).
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2. Due to the self-adjointness of A, a stability analysis is immediately available. If
A1, ..., An are the (real) eigenvalues of A, and ¢,,..., ¢y are the corresponding eigen-
vectors (note that A, has the same structure as operator A on bounded domains, i.e.,
the eigenvalues appear in pairs and the corresponding eigenvectors are complcx conju-
gates of each other; see the discussion in the previous section) then (3.7) admits the
usual orthogonal decomposition and for U}, = ¢, we have Uj*! = p;p;, where

. l-a 2
1 —i(At);) — 5 (AtA;)
i = (3.8)

1+ %(Azxj)2

Thus, even for an arbitrary FE mesh (particularly unstructured grids) it is possible to
express the eigenvalues of the transient operator in terms of the eigenvalues of operator
Ay

3. A simple calculation reveals that

<1 for %<a§1

b —

il =1 for a=

1
L >1 for 0§a<§

Thus the method is unconditionally stable but dissipative for a > 7, stable and energy
conserving (like the exact solution) for a = % and unconditionally unstable for a < %

4. Note finally that
(43U, Vi) = (PLAPLAU,, V)
= (APLAU, V)
(3.10)
= (P,AU,, AV},)
£ (AU, AV)

which implies that the solution of (3.7) in just one step would result in a fully populated
stiflness matrix (due to the presence of the projection). A practical way to avoid such
a situation is to use the decomposition

Az : '
oo b= (1405 aa) (1-0\[5 aca)) (3.11)

11




and obtain Up*! in two steps:
-1 2
Ut = (I - i\/g AtA,,) (I —iAtA, — (1~ a)%f— Ai) n

n+1 . 87 -1 n+%
ur =(I+z -2-AtA,,) uT

A different situation arises when the method of discretization in time is used. Using the

(3.12)

same discretization in time, we arrive first at the infinite-dimensional counterpart of (3.7),

2 t2
(I +a %t— Az) U™ = (I —iAtA — (1 - @) 92— A2) u" (3.13)

Note that the use of (3.13) requires increased regularity of the initial data U° and consecutive
step solutions U™, as they must be elements of D(A?). This stringent assumption is avoided
if we replace (3.13) with the relared variational version of the form

At?

n+1 n+l
(U ,V)+a-2— (AU, av)
. . n At? n 3.14
=(U,V)-zAt(AU,V)-(l—a)——2—(AU,AV) (3.14)
VV eD(A)

as U° and U™ now must belong only to D(A).

If this relazed formulation (3.14) is adopted now as a basis for spatial approximation, we
replace simply U and V' with their finite dimensional counterparts U, V, € X}, arriving

at
At?
n+1l n+1
(U, Vi) +a - (AUz*, Av,)
. . n At? n (3.15)
= (UL, Va) =i (AU}, Vi) = (1 ~ @) =~ (AU}, AV)) :
v Vh € Xh

One easily recognizes this as the well known Taylor-Galerkin method (see, e.g., [3]).
Obviously, equations (3.15) and (3.7), or equivalently (3.12), are different. The kev
point is the relaxation procedure performed at the infinite-dimensional level in the Taylor-
Galerkin method formulation. Let us mention in particular (see [3] for proof) that (3.15) is
unconditionally stable for a > 1 and conditionally stable a < '3 For none of these cases

12
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is the method energy conserving. At the infinite-dimensional level the energy conservation
takes place for a = % But even for this value of «, the relaxed formulation combined with
the spatial approximation results in extra “diffusion” and eigenvalues decay in modulus as
the “wave number” increases.

Finally, we emphasize that while in the method of lines the eigenvalues of the discrete
transient operator were directly related to the eigenvalues of the discrete operator Ay, the
eigenvalues of the transient operator resulting from (3.15) can only be related to the spectrum
of transient operator corresponding to (3.14) which in turn can be represented in terms of
spectrum of the orginal operator A.

This example suggests that as long as no relaxation predure is involved in the method
of discretization in time, both procedures lead to the same discrete scheme. The class of
implicit Runge-Kutta methods we address in the next section satisfies this assumption.

As a final remark, we note that when using the method of lines, other approximations of
operator A are possible. In particular, upwinded methods will result in composing A with
other, different projection operators. We do not address this subject in this paper.

4 Implicit Runge-Kutta Methods. Rational Approx-
imations of the Exponential Function

Consider a general system of ordinary differential equations of the form

¥y = f(y) (4.1)

where ¢ is a 1 x N vector of unknowns and f is, in general, a nonlinear function of y. The
implicit Runge-Kutta methods for solving (4.1) can be classified as one-step methods taking
an n-th step solution y™ into y™*! through s auxiliary stages Z,, j = 1,2,...,s, called the
internal approzimations, in the following way

Z; = yr+AtY a;f(Z;), 1=12,...,s
Jj=1
(4.2)
S
yt o= Y+ ALY b f(Z;)
Jj=1
where a;;, b; € R,1,j = 1,...,s. In general, determining y™*! thus reduces to the solution of

N x s nonlinear (or linear if the original system is linear) simultanecous algebraic equations.
There are several good reasons for paying such a price, and high accuracy and good stability

properties represent at least two of them. A complete discussion of the method in the coutext
of ODIEs can be found in {1].
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Special cases are of interest. If a;; = 0 for 3 > 7, system (4.2) can be decoupled and re-
duces to the solution of s consecutive single equations for internal approximations Z,,..., Z,.
Schemes belonging to this subclass are known as semi-implicit methods.

Another closely related subclass of implicit Runge-Kutta methods of interest are the
so—called singly-implicit methods, where the matrix of coeflicients a;; is similar to a lower
triangular one. Reference to this class of schemes as singly-implicit refers to the fact that the
coefficient matrix a;; has only a single real s-fold eigenvalue. In implementation, methods of
this type are as economical as the semi-implicit schemes.

Applying the approximation (4.2) to the Cauchy problem of linear acoustics, we arrive
at the one-step calculations in the form

Zk - AtZakjiAZj = U", k= 1,2,...,3
i=1

(4.3)
3
Ut = U™+ AtY_ bjiAZ;
Jj=1

where Z;, j = 1,2,...,s are the intermediate internal approximations. As the variational
formulation of (4.3) does not involve relaxation, both the classical method of lines and the
method of discretization in time produce the same result and the spectral decomposition of
the evolution operator is available both at infinite— and finite-dimensional levels. Substitut-
ing for U™ an eigenvector ¢ of A and denoting by A a corresponding eigenvalue of operator
A, we arrive at the following system of equations for coefficients d;,j = 1,...,s

de —i(AAL) Y aidi =1 k=1,2,...,s (4.4)

Jj=1
where Z = di P, resulting in the formula for the growth factor E in the form
EF=1+ 2(/\At) Z bjdj (4.5)
J=1
Solving (4.4) for dj,j = 1,...,s, we can represent them as rational functions of (—i\:At)
with -ocfficients depending upon the choice of matrix ay;.
Consequently, the growth ractor E can be represented as a rational function of AAt, too

N(=iXAD

IL(—I)\[) = m

(1.6)

where N and D are polynomials. Note that in the case of caplicit Runge-Kutta methods.
(1.6) reduces to a polynomial representation.
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Thus, all implicit Runge-Kutta methods, when applied to the acoustics equations, fall
into the category of one-step methods corresponding to (4.6), resulting in the transient
operator of the form

U™ = D(—iAtA)™! N(—iAtA) U™ (4.7)

As polynomial D can always be decomposed into a product of linear factors (possibly with
complex coefficients) the solution of (4.7) can always be reduced to the solution of s de-
coupled single equations. Thus, for the problems of interest, with the proper factorization
of polynomial D, all implicit Runge-Kutta schemes can be reduced to the solution of s
consecutive systems.

Finally, we note that combining some linear factors in D into quadratic terms and using
the method of discretization in time, one can arrive at various relaxed schemes of the Taylor-
Galerkin type discussed in the previous section.

We proceed now with the discussion of some particular cases.

Padé Approximations

Figure 2 reproduces (from [1]) a partial list of Padé polynomial approximations to the ex-
ponential function exp(z). Each of the approximations may correspond to a particular time
discretization scheme of type (4.7). We can classify them into three groups:

(a) Schemes corresponding to the terms above the main diagonal (Gauss-Legendre
methods). They are at most conditionally stable.

(b) Schemes corresponding to the main diagonal. They are all unconditionally stable
and energy conserving as the fractions are all in modulus equal one. In particular,
the second term on the diagonal corresponds to the Crank-Nicolson method of
second order and the third to the two-stage Gauss-Legendre method of fourth
order.

(c) Schemes corresponding to the terms below the diagonal. It can be shown ([1],
p. 243) that all terms from the first two subdiagonals are bounded in modulus
by one for all z for Re z < 0. Schemes of this type are called A-stable. (Those
corresponding to the first subdiagonal are known as Gauss-Radau and to the
second one as Gauss-Lobatto schemes, respectively.) In our case, x is purely
imaginary and, therefore, all these schemes are unconditionally stable. They
arc only slightly dissipative. Schemes corresponding to the third and further
subdiagonals are not unconditionally stable ([1], p. 215).

Note that for all these schemes relaxes versions are possible.




Restricted Padé Approximations

The function P(z/)
2[5 o
r(z) = —— (4.8)
(I—-=z/7)
where P is a polynomial of degree m, is called a restricted Padé approrimation to the
exponential function if

[r(2) — exp(2)] = 0("*") (+.9)

In practice, m = s — 1, s, s + 1. Schemes corresponding to (4.8) are called singly-implicit.
They are especially attractive as the solution of one step requires only one matrix inversion
and s — 1 resolutions. It can be proved ([1], p. 247) that

(-1 30 L) (3)z

(1-2)

r(vz) = (4.10)
where L, are the Laguerre polynomials of order s. The choice of pole v is somehow arbitrary.
One can show, for example, that form = sand s = 1,2,...,6 and 8 the pole 74 can be selected
in such a way as to render the unconditional stability (equivalent to A stability in this case);
for s = 7,9,10,..., such a choice is impossible. For a summary of results, we refer once
again to [1].

Numerical Examples

We conclude this section with a series of experiments comparing the behavior of various time

discretization schemes falling into the categories discussed on a model problem depicted in
Fig. 3.

Each of the time-integration schemes is combined with a particular uniform h-
p approximation in space variables (see [2] for details). For each of the cases, the calculated
pressure component is plotted at time t = 2.0. Additional graphs provide an insight into
dissipative properties of a scheme, showing the variation of the growth factor and phase
as functions of AA¢ (the range from 0 to w, corresponding to the classical von Neumann
analysis, is assumed). For comparison, the exact pressure component solution is shown in
Fig. 4.

The following abbreviations are used throughout the text
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SIRK (s, m) = s-stage, m-th order Singly Implicit Runge-Kutta
Method;

GAUSS-LEGENDRE (s,m) = s-stage, m-th order Implicit Runge-Kutta Method
based on Gauss-Legendre quadrature;

RADAU (s, m) = s-stage, m-th order Implicit Runge-Kutta Method
based on Gauss-Radau quadrature (designated as
Radau IA in [1});

LOBATTO (s,m) = s-stage, m-th order Implicit Runge-Kutta Method
based on Gauss-Lobatto quadrature (designated

as Lobatto IIIC in [1]).
Test 1—comparison of various schemes on a uniform mesh of quadratic elements.

The first test compares performance of various time stepping schemes with a fixed time
step At = 0.0625 combined with a fixed uniform mesh of quadratic elements shown in Fig.
5. (Element size h = 0.125, order of approximation p = 2.) Note that the combination
At — h corresponds to two time steps per element

Several schemes, including CRANK-NICHOLSON, TAYLOR-GALERKIN and different
versions of SIRK, GAUSS-LEGENDRE, RADAU and LOBATTO were investigated. Some
of the results are depicted in Figs. 6-13.

The following observations can be made:

1. Energy dissipating schemes (RADAU, LOBATTO, SIRK, TAYLOR-GALERKIN) give
less oscillatory results than the energy conserving schemes (CRANK-NICHOLSON,
GAUSS-LEGENDRE), and, therefore, should be preferred.

o

The energy dissipating schemes tested (RADAU, LOBATTO, SIRK) give comparable
results. Consequently, SIRK schemes should be preferred because of their low cost
compared with the RADAU and LOBATTO schemes.

3. As expected, it is inappropriate to combine high order time stepping schemes with low
order spatial approximation. Increasing the order of approximation in time does not
improve the results and, e.g., SIRK (5,5) gives even more oscillatory results than SIRIX
(4,4).

Finally, we mention that several schemes belonging to the class of Lincar Moltistep Meth-
ods have also heen tested, including the Method Based on Five-Eight Rulcs. the Adams-
Moulton Mcthod. and Gear's Backward Difference Schemes (sce [1] for details). Of those. all
schemes of order greater than 2 proved to be unstable when applied to the test problem.
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Test 2-Comparison of SIRK schemes.

As the SIRK schemes were judged to yield the most promising results in the first test.
the objective of the second test was to compare the performance of SIRK (s.s+ 1) with that
of SIRK (s,s). This time a uniform FE mesh of cubic elements, shown in I"ig. 1-{. was used.
The results for SIRK (3,4) and SIRK (4,4) are shown in Fig. 15 and Fig. 16. respectively.
As can be seen, SIRK (4,4) produces better results than SIRK (3.4).

Test 3—Comparison of SIRK (s,s) schemes combined with different p-order I'E meshes.

In the last test, an attempt was made to find an optimal combination of the order of
time stepping SIRK (s, s) scheme and the spectral order p of spatial FFF, approximation. A
uniform FE mesh with A = 0.125 and various orders of approximation p = 4,3,6, 7 was uscd.
The results for various combinations of SIRK (s, s) schemes and different p’s are shown in
Figs. 17 to 25. It seems that for the optimal combination one should select p = s — 1. As
expected, the test results are obtained with the highest order of approximation, namely for

SIRK (8,8) combined with p = 7.

5 Adaptivity

We conclude this paper with some initial results on adaptivity using the Taylor-Galerkin
scheme with a = 1 discussed in Section 3.

Error Estimation

The temporal discretization error has been neglected whereas the error due to the spatial
approximation is estimated using the element residual method in the form (comp. [8, 9.])

1

Z
1Usp = Unpssllpg < (2 n?\-) (5.1
K
where

o U}, is the approximate solution at some time level corresponding to elements of order

p.
o || - ||lgq is the global “cnergy” norm defined as
IUNa = BW,U) (5.2)
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where B is a bilinear form defining the left-hand side of a variational formulation
corresponding to a particular time-discretization scheme.

® 7k is the element error indicator function evaluated as
Nk = Br(®x:Px) (5.3)

with By the element contribution to the global bilinear form and the ¢ the clement
indicator function which is the solution to the local problem

Find g € X} .1 (K) such that
(5.4)
Bk(pk, W) =RW)VW ¢ XI?.p+1(K)

where R is an appropriate residual corresponding to element K and X} _,,(K) the
space of “bubble” functions.

For all details we refer to [].

While the mesh refinements are done on the basis of the element residual method, the
unrefinements are based on elements contribuiion to the global, “physical” energy, i.e., simply
the L2-norm

€2, =/ UTU dz (5.5)
K
Adaptive Strategy
In the following 1 and ¢ denote the maximum values of elements error and energy indicators
7 =maxny , £ = max{k (5.6)

and 7aq4, g some fixed parameters. The following adaptive strategy has been used when
solving for a typical next step solution U™*1.

1. Solve for U™*!
mesh refinements

2. Estimate error
3. Check if np < n,q for every clement I
if “yes” then

go to step 4




else
refine all elements K for which ng > 144
go to step 1

endif

mesh unrefinements
4. Unrefine all elements for which éx < €.q

5. Set U™ = U™*! and go to step 1

Numerical Experiments—The Vibrating Cylinder Problem

The problem is defined as follows (see Fig. 26).

1. Governing equations (2.6) are to be solved in the domain
Q=8\{(r,0): r<a} (5.7)
2. Boundary condition
u, = A sin wt[H(t) — H(t — T/2)] (5.8)

where A, w, T are constants and H(-) is the Heaviside function.
3. Sommerfeld radiation condition at r = oo

4. Initial condition
Uy,=0 (5.9)

For computations we accept the computational domain
N={(r0): a<r<ren, —a<l<a} (5.10)

The problem was solved using the Taylor-Galerkin method with o = 0.5 and a constant
time step At = 0.015625. The following boundary conditions were used in one time-step
calculations: Boundary condition (5.8) at r = a, —a < § < & and

u, =0 at a<r<ry, 0=z«

ou

e
The adaptive strategy was based on h-refinements. Figure 27 shows an initial FE mesh
of quadratic clements and the consecutive figures 28, 29, and 30 present the evolution of
['E mesh at time stages ¢t = 0.5, 1.0 and ¢ = 1.5, respectively. Finally, Iig. 31 shows the
computed pressure distribution at time ¢t = 1.5.

0 at r=ry, —a<l<a
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AMPLITUDE

{

DT * LAMBDA

|
1

DT * LAMBDA

p=7.

25.

Figure 25: Test 3. SIRK (8.,8) scheme, At = 0.0625, h = 0.1
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2p/2n=0, 2u./2n=0, u,=0

Figure 26: The Vibrating Cylinder Problem.
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Figure 31: The Vibrating Cylinder Problem. Pressure distribution at time = 1.5.




6 Conclusions. Further Research

The paper presents some preliminary results toward designing fully automated self-adaptive
methods for solving transient problems of type (2.10) with applications to linear acoustics.
Two concepts of discretization have been presented and discussed: the method of lines and
the method of discretization of time. While the latter one provides a natural basis for
cvery step mesh refinements/unrefinements, the first allows for an explicit representation of
spectrum of the transient operator in terms of the eigenvalues of the approximation operator
Ay, including the case of arbitrary, unstructured meshes. Consequently, all diffusive and
dispersive properties of the transient operator are known (in particular the stability analysis
is easily available) and the whole analysis reduces to the investigation of the spectrum of
operator A, as a function of adapting meshes.

The implicit Runge-Kutta schemes are shown to belong to the class of methods for which
both discretization concepts yield the same result and seem to be a natural candidate for
constructing approximations to the considered problem.

Several questions remain unresolved and are under current investigation. To mention a
few:

e Dependence of the spectrum of the approximate operator Ay, on spatial approximation,
including h-p meshes. For regular, uniform grids, eigenvalues of A, are uniformly
distributed and often are available in a closed form (that is why the von Neumann
stability analysis is available). Their structure for non-uniform meshes is not known.
Does the adaptivity, in particular that causing local transitions in element size () and
order (p), affect strongly the shape of the corresponding eigenvalues?

o If the mesh is refined/unrefined, the spectral representation of A, changes and the
corresponding solution has to be represented using different eigenfunctions (transfer
of energy between different modes). Can the spectral properties of Aj be controlled?
control it? What effect does it have on the error?

e A combined a posteriori error estimate including both time and space discretization.
Some of the SIRK schemes allow for an error control, provided one extra iteration is
performed (comp. [1]). It may be possible to combine those techniques with residual-
type estimates with respect to the space variables.

e Is it possible, by using adaptive methods, to obtain exponential convergence for the
transicnt hyperbolic equations?

We hope to answer some of these questions in a forthcoming work.
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